How to extract keywords from Woodpecker Sales Emails using generative AI

Keyword Identification
Woodpecker

As a salesperson, you know that the key to closing deals is understanding your customers' needs and pain points, and tailoring your messaging to address them. But with a high volume of sales emails to manage, it can be difficult to manually extract the most important information from each message. That's where generative AI comes in. In this post, we'll walk you through how to use generative AI to automatically extract keywords from Woodpecker sales emails, so you can quickly identify the most important information and tailor your messaging to close more deals.

What is Keyword Extraction?

Keyword extraction is a natural language processing (NLP) technique that involves identifying the most important or relevant words or phrases in a piece of text. You can use it to extract key information and themes from text, such as sales emails, and identify areas of focus for your messaging.

Keyword extraction can be performed manually, but it can also be automated using machine learning algorithms. These algorithms learn to recognize patterns and features in the text that are associated with important words or phrases, and can be trained on a labeled dataset of text.

You can use keyword extraction to analyze and summarize large amounts of text data to quickly identify the most important information and themes.

Example Use Cases

Use cases for extracting keywords from Woodpecker sales emails include:

  • Identifying common pain points and objections
  • Tailoring messaging to individual customers
  • Identifying areas for product improvement or feature requests
  • Streamlining sales workflows and prioritizing leads

Teams that might find these use cases helpful include: sales, marketing, product, and operations.

Accessing Your Data and Identifying Preliminary Keywords

You first need to identify the data that you want to work with. In this case, we are looking at sales emails from Woodpecker. You can extract this data using Woodpecker's API, export it in CSV format, or query a list of emails from your data warehouse or BI tool.

For more information on the Woodpecker API see here: https://developers.woodpecker.co/

Next, it can be helpful (but not necessary) to identify common keywords that you may want to extract from your sales emails. Generative AI tools can be used to both identify and measure frequency of keywords but also to suggest additional keywords you may not have been aware to look for. For example - you might find that recurring customer inquiries around a certain feature or pricing may provide insights into product improvement opportunities non-obvious to the initial inquiry.

Once you have your data and preliminary keywords identified, you can use generative AI to automatically extract the most important keywords from your Woodpecker sales emails. This will help you tailor your messaging to each customer's needs and pain points, and ultimately close more deals.

By leveraging the power of generative AI to extract keywords from Woodpecker sales emails, you can streamline your sales workflows, prioritize your leads, and ultimately close more deals. Give it a try and let us know what insights you uncover!

Using AirOps to perform Keyword Identification

With AirOps, you can easily extract relevant keywords and phrases from your text-based data using the Keyword Identifier data app. Here's how:

  1. Select "Keyword Identifier" from the Data Apps page. The input required for Keyword Identifier is the "text_field" which is the input text data.

  2. Decide where you want the analysis to be performed and stored. The Keyword Identifier data app can be easily used in the AirOps Data App page and via API, but in this example, the analysis will be performed in Snowflake through an external function called AIROPS_KEYWORD_IDENTIFIER.

    Here is an example SQL query:

    SELECT
    AIROPS_KEYWORD_IDENTIFIER(text_field) as result
    FROM
    your_table
  3. Execute the keyword extraction analysis by running the SQL query. The output will contain an array of keywords and phrases extracted from the input text data.

    Example Input:

    "Hello, I am having trouble with my account. I cannot seem to log in and I have tried resetting my password multiple times."

    Example Output:

    "keywords": ["trouble", "account", "log in", "resetting", "password", "multiple times"],"summary": "A customer is having trouble logging into their account and has tried resetting their password multiple times."

Using AirOps to perform Sentiment Analysis

With AirOps, you can easily perform sentiment analysis on any text data such as reviews, support tickets, or sales calls using Sentiment Analyzer. Here’s how:

  1. Select "Sentiment Analyzer" from the Data Apps page. The only input for Sentiment Analyzer is some text to analyze.

  2. Decide where you want the analysis to be performed and stored. The Sentiment Analyzer data app can be easily used in the AirOps Data App page and via API, but in this example, the analysis will be performed in Snowflake through an external function called AIROPS_SENTIMENT_ANALYZER.

    Here is an example SQL query:

    SELECT
    AIROPS_SENTIMENT_ANALYZER(text_field) as result
    FROM
    your_table
  3. Execute the sentiment analysis by running the SQL query. The output will contain a sentiment score and sentiment summary, as well as a list of positive and negative keywords extracted from the input text data.

    Input:

    "I'm sorry to say that I had a terrible experience with your product. The customer service was unresponsive and the product didn't work as advertised."

    Output:

    "positive_keywords": [],"negative_keywords": ["terrible experience", "customer service", "unresponsive", "product", "didn't work", "advertised"],"score": -0.8,"sentiment": "Very Negative"

Using AirOps to perform Text Classification

With AirOps, you can easily perform classification using generative AI. Here’s how:

  1. Select "Text Classifier'' from the Data Apps page. Below are the possible inputs for Text Classifier.text_field: The input text data.categories (optional): Categories can be specified as a comma-separated list. Leave empty for automatic determination.multi_category: Set to “true” if the text can belong to multiple categories, or “false” if it can only belong to one category.

  2. Decide where you want the analysis to be performed and stored. The Text Classifier data app can be easily used in the AirOps Data App page and via API, but in this example, the analysis will be performed in Snowflake through an external function called AIROPS_CLASSIFIER.

    Here is an example SQL query:

    SELECT
    AIROPS_CLASSIFIER(text_field, categories, multi_category) as result
    FROM
    your_table
  3. Execute the classification analysis by running the SQL query. The output will contain a list of keywords extracted from the input text data that are relevant to the identified categories and a list of categories that the input text data belongs to based on the provided categories or automatic determination.

Want to build your own LLM Apps with AirOps👇👇